MID-SEMESTER EXAMINATION B. MATH III YEAR, II SEMESTER February 2016 ANALYSIS IV.

1. Let *B* be the space of all binary sequences. Define $m : B \times B \to \mathbb{R}$ by m(b,b) = 0 and if $b \neq c$, then m(b,c) is $1/2^k$, where $k = \min\{j : b_j \neq c_j\}$, $b = (b_j)$ and $c = (c_j)$. (i) Show that *m* is a metric on *B*. (ii) Prove that *B* is separable. (iii) Prove or disprove that *B* is complete. (iv) Write an isometry from *B* to ℓ^{∞} .

Solution: (i) Metric properties of B can be verified easly. (ii) To see that B is separable, we need to produce a countable dense set in B. Choos D to be the set of binary sequences with finitely non-zero terms. This set is countable and dense. If $b = (b_1, b_2, ...)$ is a binary sequence and $\epsilon > 0$, choose N so that $1/2^N < \epsilon$. Then $m(b, b') < \epsilon$ where $b' = (b_1, b_2, ..., b_{N-1}, c_N, 0, 0, ...)$ belongs to D. Here c_N is chosen as the entry different from Nth entry of b. (iii) B is complete since every Cauchy sequence in B is eventually constant. (iv) Define the map $L : B \to \ell^{\infty}$ by

$$L((b_n)) = (b_n/2^n).$$

Here ℓ^{∞} , the space of all bounded complex numbers is equipped with sup metric.

2. Let $f : [0,1] \to \mathbb{R}$ be a function. The graph of f is $\{(x, f(x)) : x \in [0,1]\}$. Give a function f whose graph is closed, but not bounded in \mathbb{R}^2 . Show that f is continuous on I if and only if the graph is closed and bounded.

Solution: The function f(x) = 1/x for $x \neq 0$ and f(0) = 0 has its graph closed, but not bounded. The other part is a standard result, see for example Simmons book or Royden.

3. Consider the functions g_n and g defined on \mathbb{R} by g(x) = x and $g_n(x) = x + 1/n$. Prove that g_n converges to g uniformly on \mathbb{R} , but g_n^2 doesn't converge uniformly to g.

Solution: $g_n(x) - g(x) = 1/n$ which is a convergent sequence independent of x. On the other hand, $g_n^2(x) - g^2(x) = 2x/n + 1/n^2$ which cannot converge to 0 as n gooes bigger unifrilmy in x. To understand this, it is enough to produce (x_n) and some ϵ such that $|f_n(x_n) - f(x_n)| > \epsilon$ for all n. Choose for example, $x_n = n$ and $\epsilon = 2$. 4. Define $h_n: [-1,1] \to \mathbb{R}$ by

$$h_n(x) = \begin{cases} -1, & \text{if } x < -1/n \\ nx, & \text{if } -1/n \le x \le 1/n \\ 1 & \text{if } x > 1/n. \end{cases}$$
(0.1)

Determine the family $\{h_n\}$ is equi-continuous or not.

Solution: The given family is not equicontinuous at 0. Equicontinuity at 0 means that, for $\epsilon > 0$, there exists δ so that $|h_n(x) - 0| < \epsilon$ whenever $|x| < \delta$, for all n. From this it follows that if x_k converges to 0, then $h_n(x_k)$ converges to 0 as k goes to ∞ , uniformly in n. But the given function does not satisfy this. For example, $x_k = \frac{1}{\sqrt{k}}$ goes to 0. But $h_k(x_k) = 1$ for all k. For the last two problems, see Simmons or Royden.